Simulation of Synchrotron-based Microbeam Radiation Therapy using Geant4

Matthew Cameron, Andrew Dipuglia, Dr. Iwan Cornelius, Dr. Susanna Guatelli, Dr. Dean Cutajar, Dr. Jeremy Davis, Dist. Prof. Anatoly Rosenfeld, Assoc. Prof. Michael Lerch

Microbeam Radiation Therapy

- High intensity (up to 10kGy/s), low divergence, polarised, pulsed photon beam
- Use of micron sized beams to deposit very large doses

Braüer-Krisch, E. Serduc, R. Siegbahn, et al. 2010. *Mutat . Res. 704. 160-166.*

- Preferential damage to tumors
- Preclinical research, promising for paediatric patients, head and neck tumors, other radiosensitive tumors

Laissue, J. Blattmann, H. Grotzer, M. Slatkin, D. 2007. Develp. Med. Child Neurol. 49, 577-581.

Aim of the project

- Development of Geant4 simulations for characterisation of detectors designed
 - At the Centre For Medical Radiation Physics, University of Wollongong
 - for use in Quality Assurance of Microbeam Radiation Therapy (MRT) at the Australian Synchrotron Imaging and Medical Beamline (IMBL)

• Requirements:

- Modular design experiments have differing beamline configuration
- Geant4 based
- Time-dependent geometry mimic experimental phantom motion
- Efficient maximum accuracy for minimum execution time

UNIVERSITY OF WOLLONGONG

RADIATION PHYSIC

Geant4 modelling of the ESRF ID17 beamline

Specific aim of the simulation-increase stats: Maximise the number of generated photons

- Find the best steering angle of e⁻ to maximise the intensity of the photons
 W.r.t. magnetic field
- Optimisation of the photon splitting w in G4Synchrotron:
 - Increase photon generation per step in wiggler
 - Optimised to w=5000
 - The photon is recorded in the PSF with weighing number of $\frac{1}{number_electrons_job.w}$

Optimisation of photon flux for 2T Wiggler

Steering 2T expectation -0.093 deg

Steering angles of 3 T and 1.4 T

Verification of the simulation Comparison to theoretical (SPEC) Energy Spectra

Stevenson et al. 2017. J. Sync. Rad. 24. 110-141.

2.0T HDR ~70keV mean

3.0T MDR ~90keV mean

Validation of the simulation Relative dose profiles - 3T MDR 20 x 20 mm² field

Execution times

Broadbeam configuration

 Stage I PSF filling: variable depending on beam defining aperture size - 4800 hrs in total (~ 200 days)

Stage II edep for broad beam configuration: ~50 hours

Microbeam configuration (with multislit collimator)

- Stage I: ~1600 days
- Stage II: ~100 hours
- Supercomputing facility: Massive, Monash or Raijin, NCI, Canberra

Summary and conclusions

- An entirely Geant4-based model of the Australian Synchrotron IMBL has been developed
- Good agreement of simulated energy spectra against reference analytical data
- Benchmarking in progress against experimental Ion Chamber and GafChromic film measurements for a variety of configurations
- Future work includes:
 - Investigation into 4T mode
 - Migration to Geant4 Multithreaded
 - Test alternative physics lists of Geant4 how polarisation affects the simulation results
 - Test the polarisation models of Geant4

The Team - Centre For Medical Radiation Physics, UOW

A/Prof Michael Lerch

Dist. Prof Anatoly Rozenfeld

Matthew Cameron

Dr. Jeremy Davis

Andrew Dipuglia

Dr Iwan Cornelius

Dr Dean Cutajar

Optimisation of photon flux for 2T Wiggler-Energy Spectra

Angle (deg)	MDR Mean Energy (keV)	Std. Dev. Of the Mean (keV)	Max Relative Intensity (%)
-0.02	74.77	14.32	11.58
-0.05	78.73	16.70	54.95
-0.09	80.30	17.75	100.0
-0.13	78.20	16.66	61.45

